Exploring the Earth and Sky of the West

Latest

Views of Tahoma

White icefields and glaciers at the summit of a peak are visible through some clouds

Light from a nearly full moon illuminates the glaciers and icefields on the summit of Mount Rainier. 

At 14,411 feet, Mount Rainier is the highest peak in Washington and in the entire Cascade Range. British naval officer Peter Rainier never even saw the mountain that now bears his name, but he had a friend that did. Clearly, it paid to have connections in the 1700s. Oddly, Rainier did fight against the Americans during the Revolutionary War, making the fact that we continue to utter his name when referring to this grand peak all the more peculiar. Mount Rainier was originally known as Tahoma or Tacoma by the Salish-speaking indigenous tribes of the Pacific Northwest. There are periodic rumblings about renaming the peak, much like the name of Alaska’s Mount McKinley was officially reverted to Denali in 2015. Hopefully that will indeed happen someday…

Irrespective of name, Tahoma dominates the skyline from Seattle and much of the Puget Sound region. Tacoma and other towns to the south of Puget Sound are literally built on layers of debris deposited by gigantic lahars (volcanic mudflows) that periodically race down its flanks, filling river valleys on their way to the sea. The threat of future lahars and volcanic activity looms over those who live in its shadow. From my vantage point in the Yakima Valley of central Washington, the foothills of the Cascades obscure all but the uppermost few hundred feet of its glacier-clad summit (and which will, thankfully, block any future lahars). Obtaining a better view requires venturing into the mountains. Recently, we spent a weekend camping high on a ridge about a dozen miles to the south of the volcano’s summit. Our campsite in an old clear cut provided stellar, if slightly obscured views of Tahoma’s bulk.

The weather was quite variable throughout the weekend, ranging from mostly clear (but hazy) upon arrival, to partly cloudy, to overcast, to bouts of dense fog. Our view of the mountain was constantly changing. One evening I decided to capture a time-lapse of cloud movement and formation in the two hours leading up to sunset:

Sadly I did not notice the beer can stuck on top of the tree in the foreground until it was too late. Oh well. On another evening, a spectacular stack of lenticular clouds developed over the summit:

A green forested valley with a conical volcanic peak in the background. Many different types of clouds in the sky.

A series of stacked lenticular clouds above Mt. Rainier.

A series of stacked lenticular clouds above a conical volcanic peak

Closer view of the stacked lenticular clouds.

A nearly full moon provided sufficient light for photographing the mountain after dark:

A large volcanic peak illuminated by moonlight with stars in the background sky.

Tahoma bathed in the light of a nearly full moon.

Not to be outdone by Tahoma, the pinnacle of High Rock just to our west also put on quite the show at sunset, with the light of the setting sun casting an amazing shadow of the peak and it’s summit lookout tower on the foreground mists:

The setting sun casts a pink glow on low clouds above a rocky pinnacle with a lookout tower.

Sunset, High Rock, Gifford Pinchot National Forest, Washington

A nearly full moon rises over a forest of trees

A nearly full moon rises over the forests of the Cascade Mountains.

After this trip and our stunning view of Mt. Adams a few weeks ago, our goal for the summer is now to camp in the shadow of all of Washington and northern Oregon’s stratovolcanoes. Next up: Mt. St. Helens!

Comet NEOWISE Appears in the Morning Sky

Naked-eye comet alert! Comet C/2020 F3 (NEOWISE), discovered back in March, has brightened to the point where it is visible to the naked-eye in the pre-dawn sky. Both the comet and its tail were easily visible to the naked eye about one hour and fifteen minutes before sunrise this morning:

A comet with a bright nucleus and long tail appears in the pre-dawn sky.

Comet C/2020 F3 (NEOWISE) at 4:05 am PDT on July 8, 2020 from Yakima County, Washington. (Nikon D750, 260mm, f/5.6, ISO 400, 1.6 sec)

This is the first time in ~20 years of skywatching that I can recall seeing a comet and its tail with the naked eye. (Western Washington’s persistent clouds and 49°N latitude stymied my attempts to see Comet PANSTARRS in 2013.) Such comets are relatively uncommon, making it well worth the effort to get up to see this one.

Here’s how to see it yourself:

Look northeast 75-90 minutes before local sunrise. You’ll need a relatively clear horizon in that direction. For most locations in the United States, the comet will be no more than 10 degrees above the horizon at this time. A large tree 200 yards away was enough to block the view of the comet from my patio, forcing me to take a short stroll through the neighborhood to find a better vantage point. The comet is small, but for at least the next few mornings should be readily visible. Here’s a wide field view to give you a better sense of the comet’s apparent size:

A bright comet appears just over the horizon in the pre-dawn sky

Comet C/2020 F3 (NEOWISE) at 4:02 am PDT on July 8, 2020 from Yakima County, Washington. (Nikon D750, 70mm, f/2.8, ISO 400, 1 sec)

Timing is key. My experience is that the comet is best seen about 75-90 minutes before local sunrise. Too much earlier and the comet will be too low in the sky to see clearly. Too much later and the brightening dawn sky will render it invisible. This morning, by about one hour before sunrise, the comet had become much more difficult to pick out and the tail was barely visible to the naked eye. By 45 minutes prior to sunrise, the comet was no longer visible to the naked eye at all (although it was still visible in binoculars or a camera).

Since you’ll be observing in twilight, light pollution conditions shouldn’t make much of a difference here; this comet should be visible even from urban areas, provided you have a clear northeast horizon and time your attempt correctly. A pair of binoculars greatly enhances the view. For more detailed information on viewing Comet NEOWISE, check out https://earthsky.org/space/how-to-see-comet-c2020-f3-neowise

Now for a bit more on what you are seeing and how the comet’s appearance might change over the coming days and weeks: 

Comets are city-sized “dirty snowballs” made mostly of ice and rock. They are leftovers from the formation of our Solar System and orbit the Sun on highly elliptical paths. Comet NEOWISE takes several thousand years to complete one orbit of the Sun. While comets spend most of their time in the cold outer solar system, when they approach the Sun they are heated by solar radiation, causing ices on the comet to begin sublimating (turning from a solid into a gas). This creates a temporary atmosphere surrounding the comet nucleus known as the coma. That’s the bright part of the comet you see in the close-up below. A stream of ionized gas “blown” off the comet by the solar wind can form a tail, while dust particles left behind the comet can form a second tail. As you can see in the close-up, Comet NEOWISE does appear to have two distinct tails at the moment.

Close-up view of a comet with a bright nucleus and a two-pronged tail

A close up of the coma and twin tails of Comet C/2020 F3 (NEOWISE).

NEOWISE made its closest approach to the Sun back on July 3rd and is now on its way back into the outer solar system. Typically, as comets move away from the Sun’s heat, they dim. So far though, NEOWISE appears to be bucking the trend. This is exciting because while the comet is moving away from the Sun, it is moving closer to us. It will reach its closest point to Earth by about July 22nd. If the comet can maintain its brightness for just another week or two, the show could get even better. Now is still the time to look though. The comet will be visible in the morning sky for just a few more days before it disappears into morning twilight. It will reappear in the evening sky by mid-July. Here’s hoping it is still bright enough to see by then. If so, we can all enjoy its presence without having to get up at 3:30 AM!

Mt. Adams, Mosquitoes, and the Milky Way

Reflection of Milky Way and volcanic cone in a tranquil lake.

Bright Jupiter rises above the summit of Mt. Adams, with the summer Milky Way reflected in the calm surface of Takhlakh Lake, Gifford Pinchot National Forest, Washington. 

Mt. Adams is a striking feature of the western skyline from here in the Yakima Valley of Central Washington. Here’s what it looked like from our neighborhood at sunrise a few months back:

Pink morning light on a snow-capped mountain peak with a full moon setting in the background.

A setting full moon and sunrise light on Mt. Adams as seen from the Yakima Valley.

The towering volcanic cone looks close enough to touch, but in reality, reaching the base of Washington’s second highest peak requires a nearly three hour drive down a labyrinth of Forest Service roads. We’ve been wanting to explore the Mt. Adams area since we returned to Washington last year. With winter’s grip beginning to ease in the higher elevations of the Cascades, earlier this week we finally got the chance.

Mostly clear skies, calm wind, and a dark moon made for some great photo opportunities. While it may be debatable, I think some of these were worth their weight in mosquito bites. Several small ponds dot the lower flanks of Mt. Adams and snowdrifts still lingered in the shadier patches of forest, making the entire landscape somewhat damp. Consequently, the mosquitoes were ferocious! Sadly, our mosquito “repellent” only seemed to attract more. I was quickly reminded that a vastly underrated aspect of living in the southwest is the lack of bugs!

Volcanic cone and wispy clouds reflected in a tranquil mountain lake.

Mt. Adams reflected in Takhlakh Lake, Gifford Pinchot National Forest, Washington. (Not pictured: immense swarms of mosquitoes.)

Several five-petaled white flowers with yellow centers and bright green leaves dot the forest floor.

White avalanche lily (Erythronium montanum), one of the first wildflowers to emerge from the swampy ground as the snow melts away. 

Orange sunset light on a tall, snow-capped mountain peak is reflected in a foreground pond.

Mt. Adams reflected in Takhlakh Lake at sunset.

Orange and pink sunset light on the summit of a tall snow-capped mountain.

The forests just to the west of Mt. Adams happen to be located nearly in the center of the four large active stratovolcanoes of the south Cascades: Mt. Adams, Mt. Rainier to the north, Mt. St. Helens to the west, and Mt. Hood just across the Columbia River to the south in Oregon. A variety of relatively short but steep hikes in the area ascend lesser peaks, resulting in fantastic views of all four volcanoes, plus the dense forests of the Cascades:

Panorama of forested landscape dotted by tall volcanic peaks.

Panorama from Council Bluffs. Three Cascade Range stratovolcanoes (and the remains of a fourth) are visible (click to enlarge): Mt. Rainier (far left), the remains of the Goat Rocks volcano (center left), Mt. Adams (right), and Mt. Hood (far right). The upper portion of Mt. St. Helens’ eviscerated cone was also visible through the trees to the west.

A tall mountain capped with snow and ice is surrounded by dense, dark green forests and a dark blue lake.

The dense forests on the west flanks of Mt. Adams. Council Lake at bottom.

The real fun came after nightfall. Dark skies are much harder to find in Washington than in Utah, and this was my first good look at the Milky Way since last summer. The calm weather allowed me to capture the Milky Way’s reflection in Takhlakh Lake. Jupiter was kind enough to rise directly above the summit of Mt. Adams. And I got lucky and captured the brightest meteor of the evening in one exposure. This was certainly a case of being in the right place at the right time! (One might argue that the “right time” would have been a few months from now, when all the mosquitoes are dead, but then the Milky Way would not have been positioned so perfectly.)

The night sky including the Milky Way and the streak of a meteor is seen over a tall mountain peak.

A meteor takes aim at Jupiter as Mt. Adams and the Milky Way are reflected in Takhlakh Lake. 

A dark blue twilight sky is bisected by the glow of the Milky Way, and reflected in a tranquil pond.

The Milky Way begins to emerge from evening twilight. 

%d bloggers like this: